Multivariate statistical methodologies applied in biomedical Raman spectroscopy: assessing the validity of partial least squares regression using simulated model datasets.

نویسندگان

  • Mark E Keating
  • Haq Nawaz
  • Franck Bonnier
  • Hugh J Byrne
چکیده

Raman spectroscopy is fast becoming a valuable analytical tool in a number of biomedical scenarios, most notably disease diagnostics. Importantly, the technique has also shown increasing promise in the assessment of drug interactions on cellular and subcellular levels, particularly when coupled with multivariate statistical analysis. However, with respect to both Raman spectroscopy and the associated statistical methodologies, an important consideration is the accuracy of these techniques and more specifically, the sensitivities which can be achieved, and ultimately the limits of detection of the various methods. The purpose of this study is thus the construction of a model simulated dataset with the aim of testing the accuracy and sensitivity of the partial least squares regression (PLSR) approach to spectral analysis. The basis of the dataset is the experimental spectral profiles of a previously reported Raman spectroscopic analysis of the interaction of the cancer chemotherapeutic agent cisplatin in an adenocarcinomic human alveolar basal epithelial cell-line, in vitro, and is thus reflective of actual experimental data. The simulated spectroscopic data are constructed by adding known perturbations which are independently linear in drug doses as well as cytological responses experimentally determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay. It is demonstrated that, through appropriate choice of dose range, PLSR against the respective targets can differentiate between the spectroscopic signatures of the direct chemical effect of the drug dose and the indirect cytological effect it produces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares

The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...

متن کامل

Constrained regularization for noninvasive glucose sensing using Raman spectroscopy

Multivariate calibration is an important tool for spectroscopic measurement of analyte concentrations. We present a detailed study of a hybrid multivariate calibration technique, constrained regularization (CR), and demonstrate its utility in noninvasive glucose sensing using Raman spectroscopy. Similar to partial least squares (PLS) and principal component regression (PCR), CR builds an implic...

متن کامل

Monitoring Emulsion Homopolymerization Reactions Using Ft-raman Spectroscopy

The present work describes a methodology for estimation of monomer concentration during homopolymerization reactions by Raman spectroscopy. The estimation is done using linear models based on two different approaches: a univariate approach and a multivariate approach (with principal component regression, PCR, or partial least squares regression, PLS). The linear models are fitted with data from...

متن کامل

Wavenumber selection based analysis in Raman spectroscopy improves skin cancer diagnostic specificity.

Real-time Raman spectroscopy can be used to assist in assessing skin lesions suspicious for cancer. Most of the diagnostic algorithms are based on full band of the Raman spectra, either in the fingerprint region or the high wavenumber region. In this paper we explored wavenumber selection based analysis in Raman spectroscopy for skin cancer diagnosis. Wavenumber selection was implemented using ...

متن کامل

Intrinsic Raman spectroscopy for quantitative biological spectroscopy part II: experimental applications.

We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 140 7  شماره 

صفحات  -

تاریخ انتشار 2015